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Abstract This study provides an as complete as possible set of precise definitions,
within the mathematics developed for quantum similarity purposes. The topics are
embedded in the structure of vector semispaces and the possibility of constructing
generalized scalar products on them. This scenario allows describing precisely sev-
eral items and procedures like: (a) the concept of point clouds, (b) the holographic
properties of the so called unit shells of vector semispaces, (c) the cosine of a vector
set, (d) the description of point cloud huts and (e) opens the way towards the tensorial
representation of molecular structures.
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1 Introduction

Since the initial description of quantum similarity [1,2], the effort to provide with an
appropriate theoretical background the development of its applications has given birth
to a series of papers [3–27], mainly devoted to the mathematical aspects of this branch
of quantum chemistry studying the possible interrelationships of molecular sets in
particular and quantum objects in general.

In several instances the information which will be provided along this paper devel-
opment has been previously studied from a more or less profound point of view, see for
example [8,11,13–15,19,20,22,24]. However, the material included now here was dis-
persed enough among the space and time of the literature, as to feel that the systematic
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use of this material in forthcoming application papers on quantum similarity, may
convert into an uncomfortable task the citation of this large list of papers in every new
manuscript. Thus, the authors thought useful to write an up-to-date summary of the
most employed mathematical terms and definitions, associated to quantum similarity
and more generally related to the discrete and continuous description of molecular
sets.

In doing so, not only appeared in front of our minds an old collection of terms
linked in a logical sequential way, but new subtle ideas, which had not been de-
scribed before, have appeared as a consequence of the logical ordering effort on the old
knowledge.

The most interesting of these new concepts, which have developed along the build-
ing up of the present work, is the fact that within normed vector semispaces the notion
of unit shell corresponds to a hologram of the whole vector semispace.

Therefore, not only individually quantum mechanical density functions appear as
mathematical objects containing hologram properties [28], but some holographic prop-
erties can be also considered collectively present, when studying quantum density
function sets.

On the other hand, the connection of point clouds, an idea which was used in initial
work in quantum molecular similarity [3], with tagged sets [8,13] appears also evident
in the present study for the first time leading to the new concept of point cloud hut.

Finally, the notion of discrete molecular representations in a general tensorial con-
text appears as a simple consequence of the theoretical framework developed within
the present paper scheme. Such an idea encompasses the classical vectorial molecular
description and opens a vast application way in both chemical modeling and molecular
engineering fields.

All these new conceptual findings could not have been developed without the simple
formal idea of vector semispace [13,14]; leading the way to the possibility to define
in this context extended scalar products [14,19,22,27] involving point clouds. On the
other hand, generalized scalar products constitute a computational structure, which
is an essential building block for quantum similarity development. Therefore, in the
present paper all these concepts will be actors within a general and coherent notation
theater, prior to leading the way towards new ideas and advances to be published
elsewhere.

Then, from this point of view the present collection of notions can be further used
to avoid cumbersome repetitions within other forthcoming papers containing different
subjects, for instance computational techniques which demand other kind of mathe-
matical perspective.

Accordingly, the present work is organized as a set of twelve definitions, which
cover the whole set of interests associated to quantum similarity. Some of these
definitions contain more than a unique statement and if needed some subsidiary
items are also defined. In order to help the understanding of every subject, in addi-
tion to every definition there have been added several notes and examples given,
in order to clarify the various problems and applications associated to the included
definitions.
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1.1 Definitions and notes

In the following conceptual progress, several definitions will be given at each step,
related with the basic mathematical structure associated to quantum similarity [4,5,11,
12,16,24,25], which will constitute in turn the backbone of the present contribution.
These definitions comprise from the concept of vector semispace [13,14], the defini-
tion of generalized scalar products and cosines [14,22] of vector sets, and continue up to
the tensorial representation of molecular structures. This description development pro-
vides with a sufficient stable and well-defined background the practical applications,
which are planned ahead from the computational point of view, in order to continue
the series of works on quantum QSPR [21,23,24,29–34] and several new aspects of
quantum similarity [35–37]. Every definition will have several notes attached, which
will serve as particular application examples or to shed light to the definition itself.

Definition 1 Vector semispaces: A vector semispace V
(
R+)

is a vector space where
the vectors are defined over the positive (semi-)definite real field: R+. In vector semi-
spaces the additive group is a semigroup. A semigroup is a group without reciprocal
elements.

• Here and in the following Dirac’s notation for vectors will be employed. Thus one
can write, for instance: |u〉 , |v〉 ∈ V

(
R+)

. The dual will be noted as: 〈u| , 〈v| ∈
V ∗ (

R+)
.

Definition 2 Inward vector products: Given a vector space V (K), an inward vec-
tor product is defined as producing as a result another vector of the same space:
∀ |u〉 , |v〉 ∈ V (K) : |u〉 ∗ |v〉 ∈ V (K). Inward vector products are distributive with
respect the vector sum and define a multiplicative abelian semigroup over the vector
space V (K).

• This definition applies to any vector space. For instance in Hilbert spaces one can
define the inward product as:

|u〉 , |v〉 ∈ V (C) ∧ 〈u| = (|u〉)∗ → |u〉 ∗ |v〉 ≡ 〈u| ∗ |v〉 ∈ V (C)

• The neutral element with respect the inward vector product is the unity vector,
which is defined in such a manner that:

∃ |1〉 ∈ V (K) → ∀|u〉 ∈ V (K) : |1〉 ∗ |u〉 = |u〉 ∗ |1〉 = |u〉 .

• Reciprocal elements exist for some vectors, but inward product inverses have not a
general existence. That is: some vectors do not possess an inward inverse. For exam-
ple, the vector zero in general or more specifically in matrix vector spaces, matrices
with one or several null elements do not possess an inward product reciprocal ele-
ment.

Definition 3 Vector semispace generators: A vector space of dimension D: VD (K)

defined over an arbitrary field K, can be used as a generator of a vector semispace:
VD

(
R+)

, provided that R+ ⊆ K. The dimension of the generated vector semispace
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is coincident with the dimension of VD (K). The generation of the vector semispace
VD

(
R+)

is made as follows:

∀ |x〉 ∈ VD
(
R+) → ∃ |v〉 ∈ VD (K) : |x〉 = |v〉 ∗ |v〉 .

• In Hilbert spaces associated to quantum mechanics this generation procedure can
produce density functions, as elements of the generated Hilbert semispace:

∀ |u〉 ∈ V (C) ∧ 〈u| = (|u〉)∗ → |u〉 ∗ |u〉 ≡ ||u〉|2 = 〈u| ∗ |u〉 ∈ V
(
R+)

Definition 4 Point clouds: A P-point cloud BP
(
R+) = {|xI 〉 |I = 1, P } defined

in a vector semispace VD
(
R+)

is a linearly independent vector set of VD
(
R+)

with
cardinality: #

[
BP

(
R+)] = P ≤ D. Thus, BP

(
R+)

can be considered as a basis set
of some subsemispace: VP

(
R+) ⊆ VD

(
R+)

, which is a vector semispace itself.

• A molecular P-point cloud or briefly: molecular point cloud (MPC) is a point cloud
as defined before, but constructed by discrete or continuous vector representations
of molecular structures.

• In classical QSPR procedures the vectors gathered to form the MPC are finite
dimensional column (or row) vectors made of arbitrarily chosen parameters. How-
ever, within quantum similarity field the molecular description is made with density
functions or alternatively by their discrete representations, like vectors or tensors,
as elements of some vector semispace [13,14].

• Usually, classical QSPR MPC are statistically manipulated in such a way that a
dimensionality paradox appears [33].

• A quantum MPC (QMPC) corresponds to a P-point cloud, whose elements are
quantum molecular density functions or their discrete representations.

• MPC can be also thought as related to tagged sets [8].
• A tagged set W is the Cartesian product composition of two sets: the object set O

and the tag set T , in such a way that:

W = O × T → ∀w ∈ W : w = (o; t) ∧ o ∈ O; t ∈ T .

• In fact, according to this, any MPC can be considered as the tag set of a tagged set
where the object set is made of molecular structures.

Definition 5 Complete sum of a vector: A complete sum of a vector, which will be
noted: ∀ |u〉 ∈ V (K) : 〈|u〉〉 ∈ K, corresponds to the sum of the vector elements in
case of discrete vector spaces and to an integral in case of functional spaces.

• ∀ |u〉 = {uI } ∈ VN (K) : 〈|u〉〉 = ∑N
I=1 uI ∈ K

• ∀ |f〉 = f (x) ∈ V∞ (K) : 〈|f〉〉 = ∫
D f (x) dx ∈ K

• A complete sum of a vector acts as a linear operator over vector spaces:

∀α, β ∈ K ∧ ∀ |u〉 , |v〉 ∈ V (K) : 〈α |u〉 + β |v〉〉 = α 〈|u〉〉 + β 〈|v〉〉 .
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Definition 6a Shells of normed vector semispaces: If VD
(
R+)

is normed, a λ−
shell: S(λ)

D

(
R+)

is defined as the set of all vectors with norm: λ. That is:

∀ |r〉 ∈ S(λ)
D

(
R+) ⊂ VD

(
R+) : ||r〉| = λ.

Definition 6b Unit shell of normed vector semispaces: The unit shell S(1)
D

(
R+)

of a

normed vector semispace VD
(
R+)

collects all vectors such that: ∀ |s〉 ∈ S(1)
D

(
R+) ⊂

VD
(
R+) : ||s〉| = 1. Conversely, the unit shell of a normed vector semispace can

generate any other element of it, that is:

∀ |v〉 ∈ VD
(
R+) ∧ ||v〉| = ν ∈ R+ → ∃ |s〉 ∈ S(1)

D

(
R+) : |v〉 = ν |s〉 .

Some properties can be easily deduced, complementing earlier studies [13–15,19,22,
27] on this subject:

• In normed vector semispaces an associated Minkowski norm corresponds to the
complete sum of a vector:

∀ |v〉 ∈ VD
(
R+) : ||v〉| = 〈|v〉〉 = ν ∈ R+

• Unit shells as probability distribution sets. The unit shell of a normed vector semi-
space VD

(
R+)

contains all the probability distributions, which can be constructed
within VD

(
R+)

.

• Unit shells as holograms: Knowing the unit shell S(1)
D

(
R+)

of a given normed
vector semispace VD

(
R+)

, then any vector, P-point cloud, subset or λ− shell of

VD
(
R+)

, can be obtained from an element or set of S(1)
D

(
R+)

by simple homothetic

scaling. Therefore, all the information about VD
(
R+)

is contained in S(1)
D

(
R+)

.
• Thus, unit shells can be considered as holograms of normed vector semispaces.
• A quantum mechanical molecular unit shell can be made of shape functions, that

is: molecular density functions Minkowski normalized by the number of electrons,
see for example [15].

Definition 7 Generalized scalar products in vector semispaces: A generalized
scalar product of a P-point cloud in a vector semispace is defined as the com-
plete sum of the inward vector product of the P-point cloud elements. Suppose the
P-point cloud: BP

(
R+) = {|xI 〉 |I = 1, P }; then, the generalized scalar product of

its elements is defined as:

〈
P∗

I=1
|xI 〉

〉
= 〈|x1〉 ∗ |x2〉 ∗ · · · |xP 〉〉 ∈ R+.

• The usual scalar product can be retrieved as a particular case of this general defi-
nition with P = 2:

∀ |u〉 , |v〉 ∈ V (K) : 〈u|v〉 ≡ 〈|u〉 ∗ |v〉〉 ∈ K
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Definition 8 P-norm of a vector element in semispaces: Such a norm is defined as
a generalized scalar product affecting a unique vector, as follows:

∀ |u〉 ∈ V
(
R+) : ||u〉|P = 〈|u〉 ∗ |u〉 ∗ · · · |u〉〉 =

〈
P∗

I=1
|u〉

〉

• The well-known Euclidian norm is just a 2− norm:

∀ |u〉 ∈ V
(
R+) : ||u〉|2 = 〈|u〉 ∗ |u〉〉 = 〈u|u〉

• A Minkowski norm in a vector semispace is defined as a 1-norm:

∀ |u〉 ∈ V
(
R+) : ||u〉|1 = 〈|u〉〉 .

Definition 9 Cosine of the angle of a P-point cloud: The cosine of the angle ‘sub-
tended’ by a P-point cloud: BP

(
R+) = {|xI 〉 |I = 1, P } can be calculated by means

of:

cos (α)(P) = 〈|v1〉 ∗ |v2〉 ∗ · · · |vP 〉〉
(

P∏

I=1

||vI 〉|P

)− 1
P

=
〈

P∗
I=1

|vI 〉
〉 (

P∏

I=1

||vI 〉|P

)− 1
P

.

However, constructing a scaled P-point cloud as follows:

Z P
(
R+) =

{
|zI 〉 = ||vI 〉|−

1
P

P |vI 〉 |I = 1, P

}
,

then, one can also have the equivalent general cosine definition over the scaled P-point
cloud:

cos (α)(P) = 〈|z1〉 ∗ |z2〉 ∗ · · · |zP 〉〉 =
〈

P∗
I=1

|zI 〉
〉

• The following property will hold in any circumstance:

∀ |z〉 ∈ Z P
(
R+) : 〈|z〉 ∗ |z〉 ∗ · · · |z〉〉 = 1.

Proof

〈|z〉 ∗ |z〉 ∗ · · ·〉 = ||v〉|−1
P 〈|v〉 ∗ |v〉 · · ·〉 = 〈|v〉 ∗ |v〉 · · ·〉−1 〈|v〉 ∗ |v〉 · · ·〉 = 1.

• The so-called Carbó index [1,5] is just a particular case of this general definition
when P = 2. That is:

cos (α)(2) = (||v1〉|2 ||v2〉|2)−
1
2 〈|v1〉 ∗ |v2〉〉

= (〈v1|v1〉 〈v2|v2〉)− 1
2 〈v1|v2〉
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Definition 10 Point cloud huts (PCH): A P-point cloud hut HP
(
R+)

is a P-point
cloud redefined in the unit shell of a vector semispace.

BP
(
R+) = {|vI 〉 |I = 1, P } ⊂ VD

(
R+) →

HP
(
R+) =

{
|cI 〉 = 〈|vI 〉〉−1 |vI 〉 |I = 1, P

}
⊂ S(1)

D

(
R+)

• The cosine of a point cloud is invariant, when computed over a related PCH. To
prove this, it is sufficient to write the cosine of a PCH and substitute it by the
Minkowski normalized points of the original P-point cloud:

cos (α)(P) = 〈|c1〉 ∗ |c2〉 ∗ · · · |cP 〉〉
(

P∏

I=1

||cI 〉|P

)− 1
P

=
(

P∏

I=1

〈|vI 〉〉
)−1

〈|v1〉 ∗ |v2〉 ∗ · · · |vP 〉〉
(

P∏

I=1

[
〈|vI 〉〉−P ||vI 〉|P

])− 1
P

= 〈|v1〉 ∗ |v2〉 ∗ · · · |vP 〉〉
(

P∏

I=1

||vI 〉|P

)− 1
P

• A P-ball is a sphere of unit radius and dimension P .
• In a P-PCH every element is contained on the surface of a P-ball. In such a way

that every P-PCH vector can be considered possessing the same origin at the center
of the P-ball, while the other end lying at the P-ball surface.

• Therefore every P-PCH is circumscribed into a corresponding P-ball.
• A molecular set described by a P-PCH can be termed as a MPCH.
• A quantum MPCH (QMPCH) is a MPCH whose vector elements are shape func-

tions.
• Any P-point cloud hut is coincident to a set of probability distributions possessing

cardinality P .
• Comparing the elements of a MPCH is equivalent to compare probability distri-

butions.
• Consistently with the fact that the P-PCH elements are lying in the P − 1 dimen-

sional surface of a P-ball, any P-PCH can be considered as a polytope in a subsemi-
space of dimension P − 1. In this way 3-PCH generate a 2-dimensional triangle,
4-PCH generate a 3-dimensional pyramid, and so on.

• Such last property contains a holographic structure.

Definition 11 Similarity tensors: Knowing a P-point cloud of some vector semi-
space, defined as: BP

(
R+) = {|vI 〉 |I = 1, P } ⊂ VD

(
R+)

a similarity tensor of
order Q: Z(Q) = {

zi1i2···iQ ≡ z (i)
}

can be constructed as a covariant tensor, whose
elements are obtained by the generalized scalar products of Q vectors of the point
cloud:
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∀k = 1, Q ∧ ∀ik = 1, P : zi1i2...iQ =
〈

k=Q∗
k=1

∣∣vik

〉〉
.

• In practical computations, quantum similarity procedures have usually employed
second order tensors:

Z(2) = {
zi j = 〈|vi 〉 ∗ ∣

∣v j
〉〉 |i, j = 1, P

}

which have been customarily called similarity matrices and correspond to sym-
metric (P × P) matrices [4,16,29]. They match the metric matrices of the
P-dimensional subsemispace, generated by the linearly independent P-point cloud
elements.

• When dealing with quantum MPC, the associated tensor family Z = {
Z(Q)

}
is

constructed by means of a set of density or shape functions acting as MPC elements.
• When looking at a MPC, the P tensor components of order Q − 1 of every simi-

larity tensor of order Q present in the tensor collection: Z, can be associated to a
discrete tensorial representation of the molecules included in the MPC.

• That is, suppose the tensor: Z(Q) ∈ Z. Such tensor can be considered as
a vector whose components are tensors of order: Q − 1. That is: Z(Q) ={

Z(Q−1)
I |I = 1, P

}
.

• Therefore, such a tensorial representation of a MPC can be considered at the same
time as elements of a discrete MPC, belonging to the corresponding vector semi-
spaces and simultaneously also behaving as tag sets of some molecular tagged
set.

• A similarity tensor belongs to the P Q− dimensional semispace generated by the
elements of the tensorial products of the associated P-point cloud elements: ∀K I ∈
{1, . . . , P} :

{
Q⊗

I=1

∣∣vK I

〉}
.

• Similarity components of any quantum similarity tensor can be easily transformed
into unit shell elements of the corresponding semispace. Suppose the decomposi-

tion Z(Q) =
{

Z(Q−1)
I |I = 1, P

}
of some similarity tensor; then, using stochastic

scaling one can define a new set of tensors:

∀I : �
(Q−1)
I =

〈
Z(Q−1)

I

〉−1
Z(Q−1)

I .

The resultant scaled tensor: �(Q) =
{
�

(Q−1)
I |I = 1, P

}
has components belong-

ing to the unit shell, because their complete sums are unit:

∀I :
〈
�

(Q−1)
I

〉
=

〈
Z(Q−1)

I

〉−1 〈
Z(Q−1)

I

〉
= 1.

• Thus, the scaled similarity tensor �(Q) =
{
�

(Q−1)
I |I = 1, P

}
components con-

stitute a P-PCH.
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2 Final remarks

Besides the precise statements associated to quantum similarity and providing the basic
definitions related to the concept of vector semispace, here have been put forward sev-
eral new aspects of the mathematical background of this discipline. The holographic
character of the unit shell in normed vector semispaces has been described for the
first time. The connection between vector semispace subsets and tagged sets has been
evidenced also in a first instance. The generalization of scalar products and norms
in vector spaces has been unambiguously structured to be applied in further devel-
opments. New concepts, such as the point cloud hut one, have been developed. The
invariance of the generalized cosine between vector semispace shells of a P-point
cloud set of vectors has been shown. The generation feasibility of tensorial descrip-
tions of a molecular set has been discussed and constructed, as a trivial consequence of
the theoretical framework, which originates within the structure of vector semispaces
and ends with the concept of generalized scalar products. In general, one can say that
a solid succinct basis of the mathematical backbone of quantum similarity and beyond
has been described.
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